
DARPA Technical Paper: Team Caltech

Richard M. Murray∗ Joel W. Burdick Pietro Perona
Lars B. Cremean Kristo Kriechbaum Sam Pfister

Tully Foote Jeremy Gillula Jeff Lamb Alex Stewart

Engineering and Applied Science
California Institute of Technology

DARPA Grand Challenge 2005
29 August 2005

Team Members: Lyudmil Antonov, Henry Barnor, Ryan Cable, Eric Cady, Kevin Cossel,
Adam Craig, Joe Donovan, Kevin Duncklee, Ryan Farmer, Josh Feingold, Ken Fisher, Laura
Fishman, Tully Foote, Jeremy Gillula, Marie Goransson, Rob Grogan, Lily Gruenke, Barrett
Heyneman, George Hines, Erik Johansson, Tony Kelman, Dima Kogan, Jeff Lamb, Jeremy
Leibs, Gustov Lindstrom, Laura Lindzey, Lisa Nystrom, Ben Pickett, Harmon Pollack, Tami
Reyda, David Rosen, Ben Sexson, Alan Somers, Dan Soudek, Alex Stewart, Chris Wetzel,
Lusann Yang, Jason Yosinski

DISCLAIMER: The information contained in this paper does not represent the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency (DARPA) or the
Department of Defense. DARPA does not guarantee the accuracy or reliability of the information
in this paper.

Abstract

Team Caltech consists of over 50 undergraduates who have worked to conceive, design, build

and optimize Alice, our entry in the 2005 DARPA Grand Challenge. Alice utilizes a highly

networked control system architecture to provide high performance, autonomous driving in

unknown environments. Innovations include a vehicle designed for testing and racing in

harsh environments, a highly sensory-driven approach to fuse sensor data into speed maps

used by real-time trajectory optimization algorithms, health and contingency management

algorithms to manage failures at the component and system level, and a software logging

and display environment that enables rapid assessment of performance during testing.

∗Address all correspondence to Richard M. Murray, murray@cds.caltech.edu

1

Figure 1: Caltech’s 2005 DARPA Grand Challenge Entry, Alice.

1 Introduction

Team Caltech was formed in April of 2002 with the goal of designing a vehicle that could

compete in the 2004 DARPA Grand Challenge. Its 2004 vehicle, Bob, completed the quali-

fication course and traveled approximately 1.3 miles of the 142-mile 2004 course.

This year, Team Caltech has been working hard during the academic year and summer

to refine and better integrate our technology so that we can compete in (and win!) this

year’s race. Through a new course in multi-disciplinary project design, we have had over

50 students participate in conceiving, designing, implementing and testing our new vehicle,

named “Alice” (Figure 1). The team consists of a broad range of students from different

disciplines and at different skill levels, working together to create a sophisticated engineering

system. The final race team is completing the implementation and optimizing its perfor-

mance over the summer as part of the Caltech Summer Undergraduate Research Fellowship

(SURF) program.

2

1.1 Project Management

Management of Team Caltech’s activities is the responsibility of the Integrated Product

Team (IPT). Because of the undergraduate nature of the project and the desire to have the

students make the primary decisions regarding the project, the IPT functions more as a

“coordinating council” than a true IPT. However, the IPT is responsible for ensuring that

decisions are made in a timely manner, resolving cross-team issues, and keeping the project

moving forward towards its goals.

The primary organizational structure for Team Caltech is through a set of “race teams”.

Each race team is responsible for implementing a specific set of hardware and/or software

capabilities that are part of Alice. For the fall and winter quarters (Oct–Mar), four race

teams were used: Vehicles, Embedded Systems, Planning and Terrain. In the spring and

summer quarters, the Vehicles and Embedded Systems teams were combined into a single

team (Vehicle/Embedded) since much of the detailed work that was required had been

completed. In addition, the responsibility for core software infrastructure was shifted to the

Planning team, which was the main user of this functionality. The current teams and their

responsibilities are:

• Vehicle/Embedded team - responsible for the mechanical and computing hardware in

Alice, including software interfaces to actuation subsystems

• Planning team - responsible for guidance, navigation and control, including supervisory

logic and core software infrastructure

• Terrain team - responsible for state and terrain sensors (hardware and software) and

sensor fusion

In addition to the three race teams, a set of additional teams were used to carry out

activities that are required for the race but that do not directly involve hardware or software

that is part of Alice:

• Build team - responsible for the software build process and tools

• Documentation team - responsible for the wiki and all documentation submitted to

DARPA (application video, site visit materials, technical paper)

• Modeling team - responsible for modeling infrastructure, including player/gazebo

• Operations team - responsible for maintaining support vehicles + shop operations

3

• Sponsorship team - responsible for soliciting and recognizing support for Team Caltech

• System Administration team - responsible for maintaining the race and non-race op-

erating systems and user environments

Each student serves on one race team and 1-2 additional teams.

The IPT drives activities within the team based on a quarterly test plan. The test plan

is developed based on student input, typically through a planning session in the first week

of each quarter. For the winter and spring quarters (Jan-Mar, Apr-Jun), the test plan was

based on field tests approximately every three weeks, with goals and objectives for each test

that match the project-level goals and objectives. In the planning session, a rough set of high

level goals are developed by the IPT and these are used as input to a sequence of breakout

sessions in which students get together in alternating race teams and test teams to develop

a more detailed plan. The output from the planning session is used by the IPT to develop

the final test plan for the term.

For Summer 2005, the test plan was much more detailed, broken into four spirals (of

approximately three weeks each), with weekly goals and specific objectives leading up to

completion of each spiral. Starting at the end of Spiral 4.1, three days of tests were scheduled

for each week to allow sufficient time for desert testing:

1.2 System Specification

Team Caltech’ strategy for winning is embedded in its overall system specification, which

describes the performance characteristics for Alice and the team’s operations. This system

specification is used to drive the specifications for individual components that are maintained

by the teams. The current system specification contains the following requirements:

1. 175 mile (282 km) range, 10 hours driving, 36 hours elapsed (w/ shutdown/restart).

4

2. Traverse 15 cm (∼6”) high (or deep) obstacles at 15 mph, 30 cm (∼12”) obstacles at
1–2 mph, 50cm (∼18”) deep water (slowly), 30cm (∼12”) deep sand, 15 deg slope.
Detect and avoid situations that are worse than this.

3. Operate in dusty conditions, dawn to dusk; 1 CPU failure, 2 sensor failures.

4. Average speed versus terrain type:

Terrain type Distance (%) Speed (mph) Expected Time (hr)
Min Max Min Max Exp mi % Time (hours)

Paved road 1 10 20 40 30 18 10% 0.6
Dirt road 40 60 10 40 25 132 75% 5.3
Trails 20 30 5 15 10 18 10% 1.8
Off-road 5 20 1 5 5 5 3% 1
Special n/a n/a 2 2 2 2 1% 1
Total 1 40 25 175 100% 9.7

5. Safe operation that avoids irreparable damage, with variable safety factor.

6. Safety driver w/ ability to immediately regain control of vehicle; 20 mph crash w/out
injury.

7. Commercially available hardware and software; no govt-supported labor.

8. $120K total equipment budget (excl. donations); CS/EE/ME 75abc + 24 SURFs.

9. Rapid development and testing: street capable, 15 minute/2 person setup.

2 Vehicle Description

Alice is a 2005 Ford E-350 van that has been modified by Team Caltech sponsor Sportsmo-

bile, Inc. for offroad usage. Modifications include custom suspension and transmission, plus

electrical power and air handling systems.

Modifications. Team Caltech’s system specification emphasizes ease of testing, so we

elected early on to employ a street capable vehicle as our entry in the Grand Challenge. The

vehicle of choice is a modified Ford E-350 named Alice, which has been extensively modified.

Sportsmobile, Inc. performed the 4WD conversion, including the installation of a Dynatrac

front axle, long-travel off-road suspension components, skid-plates, an electrical power gen-

eration capability and centrally mounted server case in the rear of Alice. Aluminess, Inc.

fabricated the front bumper with bumper LADAR mount, in addition to the adjustable

unistrut sensor mount situated on the roof. Additionally, the members of Team Caltech

5

(a) Suspension (b) Bumper and differential (c) Rear workstations

Figure 2: Offroad modifications by Sportsmobile, Aluminess and Team Caltech.

have completed the transformation of the interior into its current form as a fully-featured

software development lab.

To support the fact that Alice is intended to function as a mobile workstation, she has

been designed for safety as well as functionality; developers are held into their custom racing

seats by 5-point harnesses. The selection of restraints was chosen to keep any developers

inside Alice firmly secured for both personal safety, and ease of typing, even over rough off-

road terrain at high speeds.

Power. Alice has a six liter diesel engine, selected because of its ability to idle for extended

period of time at very low rates of fuel consumption. The electrical power generation system

consists of the vehicle alternator, a 3 kW auxiliary generator mounted on the rear of Alice,

and a set of four deep-cycle batteries suspended in a shielded bay underneath the rear

of Alice. The electrical system can power the vehicle’s computing, actuation and sensing

systems for well over 24 hours with the engine and generator running.

Actuators. The steering actuator is mounted underneath the steering wheel, and it is

directly linked to the steering column by a chain and sprocket drive. The arrangement is

such that when disabled, the motor can be easily back-driven, keeping the vehicle road-legal,

and not impairing human control. The steering motor can be easily disabled through a

switch on the dashboard, allowing a human driver to take control whenever necessary.

The 2005 E-350 uses electronic throttle controls, which removes the requirement for

mechanical actuation. In manual operation, moving the accelerator pedal with your foot

moves three potentiometers that modulate three reference voltages which in turn control the

throttle of the vehicle. The throttle controller implemented in Alice mimics the voltages

output from these potentiometers through a computer interface. A throttle switch located

on the dashboard allows the driver to choose the source of the reference voltages fed to the

engine, which allows the driver to change between manual and computer control with the

6

(a) Steering Motor (b) Throttle Switches (c) Brake System

Figure 3: Actuation subsystems.

flick of a switch.

The brake actuator is mounted beneath the drivers seat and consists of four pistons, each

approximately twice as powerful as the next smallest. This combination of pistons enables

the actuator to support 16 discreet brake pedal positions; 0 (no brake) to 15 (full brake), all

of which can be applied by the brake actuator faster than they would be if a human were

driving. In addition there is a 5th override cylinder in Alice which will be set-up to fire in the

event of power loss, providing Alice with failsafe stopping ability. When not in use, the rod

connecting the piston to the brake is easily removed, avoiding any risk of the brake actuator

interfering with normal driving.

Computer and Interface Hardware. Alice’s software systems run on six Dell PowerEdge

servers and two quad-core IBM Opteron-based servers running Gentoo Linux. Developers

access the servers via a 4-user KVM (keyboard, video, mouse) switch, allowing each person

access any of the servers from any of the workstations within Alice. The servers themselves

are housed in a shock-isolated, climate-controlled box fitted with mil-spec connectors.

The interface electronics allow the throttle, brake and steering actuators to be com-

manded by the software running on the servers. These controllers are mounted in a shock-

isolated case behind the drivers seat, and are connected to Alice’s internal gigabit Ethernet

network through a serial device server (SDS). The SDS allows any computer to communicate

with a given actuator controller over the network, providing redundancy of actuator control

in the event of a server failure.

E-Stop. Team Caltech has implemented an E-Stop device, capable of putting the vehicle

into pause, run, and disable modes as specified by DARPA. The E-Stop device is primar-

ily designed to seamlessly integrate with the E- Stop controller which will be provided by

DARPA. However, when not connected to the DARPA E-Stop, run, pause, or disable modes

can still be specified using our own remote control system. In addition to the ability to

trigger an E-Stop in hardware, an E-Stop pause can also be triggered in software, either by a

7

Figure 4: Team Caltech Software Architecture.

human operator or by one of the software modules; this capability has been used extensively

during testing of the planning architecture.

3 Autonomous Operations

Team Caltech’s software architecture is shown in Figure 4. This architecture is implemented

on a high-bandwidth, multi-computer network that is capable of handling the large amounts

of data and processing required for autonomous navigation.

3.1 Processing

Team Caltech has chosen to make use of sophisticated algorithms for sensing and navigation,

hence it uses a substantial amount of processing power for its operations. Alice’s software

8

Figure 5: Team Caltech GUI, showing elevation estimates from one of the LADAR units.

systems run on six Dell PowerEdge servers and two IBM quad-core Opteron servers, all

running Gentoo Linux. All computers are connected via two independent 1 Gb/s ethernet

networks, with high bandwidth data restricted to one network and other inter-computer

communications running on the second interface.

A major element of Caltech’s software infrastructure is the GUI and logging capability.

These features allow for rapid determination of conditions that lead to errors and also offline

testing of software on pre-stored sensory data. Two simulation environments are also used:

a dynamic model of the vehicle motion (including traction) that is used for testing without

sensory input and a Gazebo simulation environment.1

3.2 Localization

State estimation is accomplished through the combination of Navcom SF2050G and No-

vatel ProPak-LBplus differential GPS units to measure absolute position, and a Northrop

Grumman LN-200 IMU to measure relative position and orientation. The inputs from these

sensors are combined through Kalman filtering to produce an optimal estimation of state.

This state estimation is then broadcast across the network, where it is buffered and inter-

1The Gazebo simulation environment was used relatively lightly due to the team’s decision to focus on
desert testing.

9

polated as necessary, providing reliable state information to all of the modules running in

Alice.

Alice has the capability of storing previously driven terrains and incorporating this in-

formation into its terrain and cost data.

3.3 Terrain Sensing

All of Alice’s sensors are mounted either on the roof or in the bumper. Aluminess has

fabricated a custom sensor mount with unistrut (visible in Figure 1). This enables us to

easily mount new sensors or change the position of current sensors as needed for rapid

development.

The two main types of terrain sensors Alice makes use of are LADAR and camera-based

stereovision. We currently have 2 SICK LMS-221-30206 LADARs mounted on Alice. These

LADARs have a maximum range of 80 meters and a scanning rate of 75 Hz. One of these

LADAR units is enclosed in the front bumper, providing reliable detection of large obstacles

independent of range. The other unit is mounted on the roof, pitched downwards such that

it scans at approximately 30 meters from the vehicle. This provides us with medium range

terrain detection as it sweeps out a path on the ground. A pair of Point Grey Dragonfly

cameras mounted on the roof are used in combination with SRI’s Small Vision System to

generate 3D pointclouds. These pointclouds cover a broader range in front of the vehicle. An

additional single camera mounted on the vehicle also feeds a road-finding algorithm. This

algorithm identifies vanishing points and uses dominant pixel orientations within an image

to predict both the direction and location of roads in the image. This will enable us to take

advantage of any road networks, whether they be simple dirt grooves from other offroad

vehicles, established desert roads, or paved highways.

An additional SICK LMS 291-S14 LADAR has been mounted on the roof. This LADAR

is pitched to look approximately 40 meters out, providing us with medium to long range

LADAR scans at 75 Hz. We have also mounted a Reigl LMS Q-120i LADAR on Alice. This

LADAR provides .04 degree resolution with a maximum range of 150 meters. This LADAR

is be pointed out at approximately 65 meters, providing us with long range LADAR scans. A

second pair of stereo cameras with zoom lenses will provide an additional stereo pointcloud

at a range of approximately 40 meters.

Data from each LADAR and each stereo pair is fused at the elevation level. Each LADAR

scan or stereo point cloud is first converted into elevation values associated with their x, y

coordinates in a global reference frame. These individual maps are then combined on a

10

cell-by- cell basis using a fusion algorithm to generate a single unified map which contains

an optimal estimate of the elevation at each cell in the grid. The mapping software then

analyzes that map to determine the locations of obstacles as well as the speed at which

non-obstacle cells can be driven. This data is then fused with information from Alice’s

road-finding algorithm to generate a final speed limit map for evaluation by the planning

software.

3.4 Navigation

Navigation is accomplished using two different planning techniques: a high speed reactive

planner and a more sophisticated deliberative planner.

The reactive planner works by evaluating a large number of “trial” trajectories composed

of S-bend primitives which diverge from the vehicles current position, and converge to a series

of points that span the RDDF a specified distance further along the RDDF. The reactive

planner then discards any “trial” trajectories that are impassable, defined as passing though

a cost map cell whose cost is greater than a specified threshold. Of the remaining trials, the

reactive planner evaluates the “cost” of each trajectory using a function of the number of

cost map cells through which the trajectory passes, and the recorded costs in each of these

cells.

The deliberative planner maintains its own version of the cost map and determines an

optimal trajectory through the RDDF and detected obstacles. The planned trajectories are

optimal in the sense that they are dynamically feasible and time-optimal for the current

initial conditions. Team Caltech uses a receding horizon motion planning algorithm, with a

kinematic bicycle model of the vehicle to determine approximate dynamic feasibility. The

task is stated as a nonlinear programming problem, which is then solved using SNOPT,

a commercially available method. Once a trajectory has been created by the deliberative

planner, it is sent to the trajectory selection module for evaluation prior to execution to

protect against rapid changes in circumstances such as large obstacles appearing in the cost

map.

The trajectory selector receives trajectories from the two different sources: the delib-

erative planner and the reactive planner. Each of these trajectories are evaluated through

the current cost map to check for recent changes. First the selection algorithm determines

whether a trajectory has become impassable. Next a comparison in of the cost associated

with each of the trajectories which were found to be passable is performed. Total cost per

trajectory is a function of the number of cells, and costs associated with each of the cells

11

passed through by the trajectory being evaluated. The trajectory selection algorithm then

selects the trajectory that is passable, and has the lowest cost. If neither trajectory meets

the passability criteria, then a failure mode is generated, which is detected by the fault man-

agement executive and command Alice to come to an abrupt stop and then take action to

identify and rectify the fault.

3.5 Vehicle Control and Contingency Management

Once a desirable trajectory has been generated, verified, and selected by the trajectory

selection module, the problem becomes one of actually following the path. The trajecto-

ries coming from the planner include the Northing and Easting UTM coordinates, as well as

their first and second derivatives. This allows an open loop feedforward term to be computed

based on known vehicle dynamics, around which a control loop is then wrapped. Currently,

there are separate feedback loops around the steering (latitudinal), and throttle and brake

(longitudinal) actuators. The longitudinal accelerations are controlled based on the error

between desired and actual speed, while lateral accelerations are controlled based on per-

pendicular distance from path and the difference between desired and actual heading. Once

the feedforward and feedback terms have been combined, they are passed directly to the

actuator control module which translates the commands and passes them to the actuators.

Alice is equipped with a supervisory controller that can modify the system operation if a

fault is detected. In this context, a fault is defined as a state of the system in which she does

not perform as intended. A failure mode is any series of faults that have a characteristic

effect on the performance of the system. For example, pushing up against a barbed wire fence

which cannot be seen by the available sensors is an instance of the unseen blocking obstacle

failure mode. Team Caltech is developing an approach to fault management architecture

design involving a combination of distributed monitoring and reporting of component health

and distributed adaptive rectification logic. Similar examples of this type of approach have

been demonstrated at JPL as part of NASA’s Mission Data System (MDS).

4 Implementation and Optimization

Team Caltech makes use of a spiral development process to guide our efforts as we make

progress toward the completion of the DARPA Grand Challenge. Spirals are defined phases

in the projects development moving outward from the initial point. Each spiral outward adds

a new layer of functionality that future layers can build upon. A given spiral passes through

12

the following phases: define, design, build and test. A spiral process is far more useful

for a project like ours that requires multiple components that all depend on one another

to be developed in parallel since any given component can always depend on the level of

functionality of the other components in the previous spiral.

4.1 Development Tools

Team Caltech uses proven open-source tools as a critical part of our code-development. All

code is written in C/C++. The source tree is managed with the subversion source control

system, allowing for versioning control. Additionally, HTML documentation of the source

tree is automatically generated by doxygen. The bugzilla tool from the Mozilla project is

used to track the different bugs we inevitably encounter in the team source tree. Bugzilla

is also used to manage tasks assigned to different members of the team. The team also

maintains a wiki for general documentation. This extent of this documentation ranges from

meeting minutes to sub- system documentation and status. The HTML format of the wiki

makes our documentation easily accessible to the members. Finally, the team also maintains

a web based discussion board for its members to further discuss any new ideas or large issues

that come up when its hard to get everyone together for a meeting.

As part of the plan to gain a competitive advantage, Team Caltech invites industry

experts to review the progress of the team at the end of each spiral of development and

milestone (once per term). This review committee includes people from JPL, Northrop

Grumman, STI and other companies. As part of the review, the industry experts submit

requests for action (RFA’s) on any component of the architecture that they feel needs work.

This puts an obligation on the team to have a response ready on the next review session and

helps to guide some of our work over the next term.

An important feature of all modules is their ability to log raw data and reply the data

for offline debugging and testing. This capability is used frequently in testing and allows a

detailed analysis of failures and the ability to replay data through the system to verify that

modifications solve the intended problem.

4.2 Test Plan

Development and testing of individual modules and full system integration is achieved

through an extensive test plan. During the academic year, multi-day field tests were sched-

uled approximately every three weeks, starting in December. With the beginning of the

13

summer, this schedule was accelerated and Team Caltech spent 3-5 days testing each week

starting at the end of July, beginning with local testing in Pasadena and increasing the

amount of time spent on desert testing as the summer progressed.

Each field test is organized by a “test manager”. The test manager is responsible for

setting the objectives for the test, tracking the preprations for the test, and maintaining the

schedule during the test. This person is not assigned to any other tasks, otherwise they get

distracted and stop coordinating the various activities that are taking place. The specific

responsibilities of the test manager include:

• Insuring that everyone at the test is aware of their role and the timing of the tests that

they are participating in.

• Keeping track of what activities are required to start a test and the making sure the

various activities will be completed in time to perform the test in the specified slot (if

not, the test manager should either ask more people to help on the bottleneck activity

or adjust the schedule) .

• Rearrange the test schedule if needed to accomodate events of the day.

• Run the end of test team meeting, but going through the objectives for the testand

seeking input from all team members on what was accomplished and what we should

do differently the next time.

The students who participate in a test are chosen based on which modules will be tested.

14

